
Program „EFECTAS“

April 21, 2020

Version 1.1

Table of Contents
1. Description ... 1

2. Data downloading .. 2

3. Data adaptation.. 3

4. Descriptive statistic .. 3

4.1. Frequency table .. 4

4.2. Descriptive .. 6

4.3. Percentile ... 7

4.4. Benchmarks .. 8

5. Correlation ... 9

6. Regression .. 13

6.1. Linear regression .. 13

6.2. Multiple linear regression .. 15

6.3. Logistic regression .. 16

7. Multilevel ... 17

7.1. Data preparation according to OECD manual .. 22

7.2. Weight normalization acordint to OECD manual ... 23

1. Description
This program is prepared on the basis of three open source R program packages BIFIEsurvey,

EdSurvey and intsvy.

This program is designed to work with PISA 2015 data. EFECTAS opportunities:

 Download PISA data from the OECD website

 Data adaptation for BIFIEsurvey, EdSurvey and intsvy packages

 Presentation of descriptive statistics for categorical and continuous variables.

 Pearson and Spearman correlations

 Linear and logostic regressions

 Multilevel analysis

 Data visualization

2. Data downloading
This function is taken from EdSurvey package. Uses an Internet connection to download PISA data to a

computer. Data come from the OECD website.

Function usage

downloadPISA(root,years = c(2000, 2003, 2006, 2009, 2012, 2015))

root a character string indicating the directory where the PISA data should be stored.

Files are placed in a folder named PISA/[year]. For Windows, the path is written

"C:/Users/ ". For Mac, the path is written “/Users/”.

years an integer vector of the assessment years to download. Valid years are 2000, 2003,

2006, 2009, 2012, and 2015. Program EFECTAS is designed for 2015 data

analysis.

Code example

download PISA 2015 data (International Database only)
myroot <- "C:/Users/User/ " #write your own path

year <- 2015

downloadPISA(myroot, year)

Function result

Myroot and year are values given to downloadPISA function. The downloadPISA function will

output the message in the console window.

Also a data download table will appear with a note of the download progress.

The archived data is downloaded to the computer. The data is extracted when it is downloaded.

The result of the function is the 2015 PISA data in the PISA / 2015 directory.

3. Data adaptation
In the downloaded data, the student and school databases are separate. Databases are interconnected

before statistical analysis. It is not recommended to use all the data in the database for statistical

analysis. It is recommended to select the analysed countries and variables that are needed for the

specific analysis. This function is used to select and prepare the required data for BIFIEsurvey,

EdSurvey and intsvy packages.

Function usage

form_data (path_root, mycountry, myvariables)

path_root a character string indicating the directory where the PISA data is stored. For

Windows, the path is written "C:/Users/ ". For Mac, the path is written “/Users/”.

mycountry a character vector of the country/countries to include using the three-digit ISO

country code. A list of country codes can be found in the PISA codebook or

https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes. If you want to use all

countires write "all", but it is not recommended.

myvariables a character vector of the variables to be included in the data. The names of the

variables are written in lower case. Country code, student ID, school ID, weights

and replicate weight are default in the data. There is no need to write all plausible

values names (e.g. “pv1math”, “pv2math”), it is enough to write a common name

(e.g. “math”) and all plausible values will be assigned to the data. Common names

for plausible values in PISA 2015 data: "math", "read", "scie", "scep", "sced",

"scid", "skco", "skpe", "ssph", "ssli", "sses", "flit", "clps".

Code example

myroot <- "C:/Users/User/ " #write your own path

mycountries <- c("LTU")

myvariables <- c("math", "read", "scie","escs", "st011q12ta", "st004d01t")

mydata <- form_data(myroot, mycountries, myvariables)

Function result

The data is provided in the data.frame.

The data column names are displayed with the function colnames(mydata).

Brief information about each column (min, max, median, mean, 1st and 3rd Quantiles and NA's) are

displayed with the function summary(mydata).

4. Descriptive statistic
There are four functions in descriptive statistic: frequency_table, descriptive, tile and

ben_marks.

4.1. Frequency table

This function displays frequency table, number of NA and missing values, percentage of categorical

variables. Also this function can display number of unique entries of all variables. The function can

calculate frequencies for several variables at the same time, except the number of missing values

calculate for one variable.

Function usage

frequency_table(mydata, myvariable, variables, group = NULL,

missing_values = FALSE, unikalus = FALSE)

mydata Data.frame formed with form_data function

myvariable a character vector of the variables to be included in the data. The names of the

variables are written in lower case. Country code, student ID, school ID,

weights and replicate weight are default in the data. There is no need to write

all plausible values names (e.g. “pv1math”, “pv2math”), it is enough to write

a common name (e.g. “math”) and all plausible values will be assigned to the

data. Common names for plausible values in PISA 2015 data: "math", "read",

"scie", "scep", "sced", "scid", "skco", "skpe", "ssph", "ssli", "sses", "flit",

"clps".

variables a character vector of the variables for which the frequency table is calculating

group Optional grouping variable(s). Default is NULL

missing_values It is system missing data. Default value FALSE

uniq Logical expression. Default FALSE. When a TRUE value is obtained, the

function outputs a frequency table that shows how many unique records the

variable has.

1. Code example – frequency table for several variables.

myvariables <- c("math", "read", "scie","escs", "st011q12ta", "st004d01t",

"st034q02ta", "sc012q01ta")

dsc_variables1 <- c("st011q12ta", "st004d01t", "st034q02ta", "sc012q01ta")

table1 <- frequency_table(mydata, myvariables, dsc_variables1)

table1

Function result

The result gives a table with calculated frequencies of variables. The name of a single variable in the

table is repeated as many times as it has unique records. For example, variable st011q12ta (In your

home: A dictionary) has three unique records (1 answer Yes, 2 – No and 9 – NA). The unique record

value show in varval column. Ncases column is frequency of records. Nweiht column is sum of weight.

Perc column is percentage.

2. Code example – frequency table for several grouped variables

myvariables <- c("math", "read", "scie","escs", "st011q12ta", "st004d01t",

"st034q02ta", "sc012q01ta")

dsc_variables1 <- c("st011q12ta", "st034q02ta")

dsc_group <- c("st004d01t")

table2 <- frequency_table(mydata, myvariables, dsc_variables1, mygroup =

dsc_group)

table2

Function result

The result gives a table with calculated frequencies of grouped variables. In the table, the name of a

single variable is repeated several times due to the number of unique entries and grouping. Varval

column is unique record value. Groupvar column is grouping variable name. Groupval is unique group

record value. Ncases column is frequency of records. Nweiht column is sum of weight. Perc column is

percentage.

3. Code example – unique entries of variables

myvariables <- c("math", "read", "scie","escs", "st011q12ta", "st004d01t",

"st034q02ta", "sc012q01ta")

dsc_variables1 <- c("st011q12ta", "st034q02ta", " escs")

dsc_group <- c("st004d01t")

unique = TRUE

table3 <- frequency_table(mydata, myvariables, dsc_variables1, mygroup =

dsc_group, uniq = unique)

table3

Function result

The result gives a table with numbers of unique records of grouped variables. In the table, the name of

a single variable is repeated several times due to the grouping. parm column is variable name.

Groupvar column is grouping variable name. Groupval is unique group record value. Ncases column is

frequency of records. Nweiht column is sum of weight. Est column is number of unique value.

4. Code example – frequescy of missing values

only for one variable!!!

myvariables <- c("math", "read", "scie","escs", "st011q12ta", "st004d01t",

"st034q02ta", "sc012q01ta")

dsc_variables1 <- c("st011q12ta")

missing_values = TRUE

table4 <- frequency_table(mydata, myvariables, dsc_variables1,

missing_values = missing_values)

table4

Function result

The result gives a frequency table. The name of variable is in the first column name. N is number of

records. The sum of weight is in the third column. Percent column is the value of percentage.

4.2. Descriptive

This function displays minimal and maximum values, average, standard deviation, median, 1st and 3rd quantile

for continuous variables. The function can calculate descriptive statistic for several variables at the same

time. The total descriptive statistic for all plausible values are calculated by giving the common name of the

plausible values for function. Common names for plausible values in PISA 2015 data: "math", "read",

"scie", "scep", "sced", "scid", "skco", "skpe", "ssph", "ssli", "sses", "flit", "clps".

Function usage

descriptive(variables)

variables a character vector of the variables for which the frequency table is calculating

Code example

dsc_variables2 <- c("escs", "pv1scie", "pv2scie", "pv3scie", "pv4scie",

"pv5scie", "pv6scie", "pv7scie", "pv8scie",

 "pv9scie", "pv10scie", "scie")

table5 <- descriptive(dsc_variables2)

table5

Function result

The result gives a descriptive statistic for continuous variables. Variable column is name of the variable

the row regards. N column is total number of cases (both valid and invalid cases). Weighted N column

is the sum of weights. Min. column is smallest value of the variable. 1st Qu. column is first quantile of

the variable. Median column is median value of the variable. Mean column is mean of the variable. 3rd

Qu. column is third quantile of the variable. Max. column is largest value of the variable. SD column is

standard deviation or weighted standard deviation. NA’s column is number ofNAin variable and in

weight variables. Zero-weights column is number of zero-weight cases if users choose to produce

weighted statistics. (Bailey et al., 2019)

4.3. Percentile

Calculates the percentiles of a numeric variable. The percentiles can be calculated only for one variable

at the same time.

Function usage

tile(variables, percent)

variables the character name of the variable to percentiles computed, typically a

subjectscale or subscale

percent a numeric vector of percentiles in the range of 0 to 100 (inclusive)

Code example

prc_variables <- "escs"

percent <- c(5, 25, 50, 75, 95)

percentiles <- tile(prc_variables, percent)

percentiles

Function result

The result gives a table. percentile column is the percentile of this row. estimate column is the

estimated value of the percentile. ee column is the jackknife standard error of the estimated percentile.

df column is degrees of freedom. confInt.ci_lower column is the lower bound of the confidence

interval. confInt.ci_upper column is the upper bound of the confidence interval. nsmall column is the

number of units with more extreme results, averaged across plausible values. (Bailey et al., 2019)

4.4. Benchmarks

Calculates percentage of students at each proficiency level defined by PISA. Or at proficiency levels

provided by the useR (Caro and Biecek, 2019). The benchmarks can be calculated only for one

variable. The variable is common plausible values name. Common names for plausible values in PISA

2015 data: "math", "read", "scie", "scep", "sced", "scid", "skco", "skpe", "ssph", "ssli", "sses", "flit",

"clps". For variables that do not have plausible values, benchmarks is not available.

Function usage

ben_marks(mydata, variable, bench)

mydata Data.frame formed with form_data function

variable A common plausible value name. Common names for plausible values in

PISA 2015 data: "math", "read", "scie", "scep", "sced", "scid", "skco", "skpe",

"ssph", "ssli", "sses", "flit", "clps".

bench The cut-off points for the assessment benchmarks (e.g., cutoff= c(357.77,

420.07,482.38, 544.68, 606.99, 669.30)).

Code example

bn_variable <- "scie"

bench <- c(357.77, 420.07,482.38, 544.68, 606.99, 669.30)

marks <- ben_marks(mydata, bn_variable, bench)

marks

Function result

The result gives a table. CNT column is name of country. Benchmarks column is cut-off points specify

by you. Percentage column is percentage of students at each proficiency level. Std. err. column is value

of standard error.

5. Correlation
Calculate Pearson and Spearman correlation coefficients. Pearson correlation can be calculated

between several continuous variables and for all plausible values named with common name. Common names

for plausible values in PISA 2015 data: "math", "read", "scie", "scep", "sced", "scid", "skco", "skpe",

"ssph", "ssli", "sses", "flit", "clps". Spearman correlation can be calculated between two continuous

variables. Cannot be calculated for all plausible values.

Function usage

correlation(mydata, myvariables, variables, group = NULL, method =

c("Pearson",”Spearman”)

mydata Data.frame formed with form_data function

myvariables a character vector of the variables to be included in the data. The names of the

variables are written in lower case. Country code, student ID, school ID,

weights and replicate weight are default in the data. There is no need to write

all plausible values names (e.g. “pv1math”, “pv2math”), it is enough to write

a common name (e.g. “math”) and all plausible values will be assigned to the

data. Common names for plausible values in PISA 2015 data: "math", "read",

"scie", "scep", "sced", "scid", "skco", "skpe", "ssph", "ssli", "sses", "flit",

"clps".

variables a character vector of the variables for which the correlation is calculating

group Optional grouping variable(s). Default is NULL

method a character string indicating which correlation coefficient (or covariance) is to

be computed. One of Pearson (default) or Spearman.

1. Code example – Pearson correlation between several variables

myvariables <- c("math", "read", "scie","escs", "st011q12ta", "st004d01t",

"st034q02ta", "sc012q01ta")

cor_variables <- c("escs","pv1scie", "pv2scie")

cor_coef <- correlation(mydata, myvariables, cor_variables)

cor_coef

Function result

Outputs four tables: correlation statistic, correlation matrix, covariance statistic and covariance matrix.

2. Code example – Pearson correlation between several variables for all plausible

values

myvariables <- c("math", "read", "scie","escs", "hisei", "st011q12ta",

"st004d01t", "st034q02ta", "sc012q01ta")

cor_variables <- c("escs","hisei", "scie")

cor_coef <- correlation(mydata, myvariables, cor_variables)

cor_coef

Function result

Outputs four tables: correlation statistic, correlation matrix, covariance statistic and covariance matrix.

3. Code example – Pearson correlation between several variables for all plausible

values grouped by gender.

myvariables <- c("math", "read", "scie","escs", "hisei", "st011q12ta",

"st004d01t", "st034q02ta", "sc012q01ta")

cor_variables <- c("escs","hisei", "scie")

group <- c("st004d01t")

(cor_coef <- correlation(mydata, myvariables, cor_variables, group =

group))

Function result

Outputs six tables: correlation statistic, correlation matrix for female, correlation matrix for male, covariance

statistic, covariance matrix for female and covariance matrix for male.

4. Code example – Spearman correlation

cor_variables <- c("escs", "pv1scie")

method <- "Spearman"

cor_coef <- correlation(mydata, myvariables, cor_variables, method =

method)

cor_coef

Function result

Outputs only correlation coefficient.

6. Regression
Calculate linear and logistic regression.

6.1. Linear regression

Regression is calculated for one dependent variable and for several independent variables. Linear

regression can be calculated with three packages: BIFIEsurvey, EdSurvey and intsvy. Regression can

be calculated for single plausible value and for all plausible values named with common names.

Common names for plausible values in PISA 2015 data: "math", "read", "scie", "scep", "sced", "scid",

"skco", "skpe", "ssph", "ssli", "sses", "flit", "clps".

Function usage

line_regression(mydata, myvariables, depended, independed, num_pack)

mydata Data.frame formed with form_data function

myvariables a character vector of the variables to be included in the data. The names of the

variables are written in lower case. Country code, student ID, school ID,

weights and replicate weight are default in the data. There is no need to write

all plausible values names (e.g. “pv1math”, “pv2math”), it is enough to write

a common name (e.g. “math”) and all plausible values will be assigned to the

data. Common names for plausible values in PISA 2015 data: "math", "read",

"scie", "scep", "sced", "scid", "skco", "skpe", "ssph", "ssli", "sses", "flit",

"clps".

depended string for the dependent variable in the regression model

independed a character vector of the independed variables

num_pack the package number with which the regression is to be calculated

1. Code example – linear regression with BIFIEsurvey package

myvariables <- c("math", "read", "scie","escs", "st011q12ta", "st004d01t",

"st034q02ta", "sc012q01ta")

depended <- "scie"

independed <- c("st011q12ta", "st004d01t")

package <- 1 #1 - BIFIEsurvey, 2 - EdSurvey, 3 - intsvy

reg_equation <- line_regression(mydata, myvariables, depended, independed,

package)

summary(reg_equation)

Function result

2. Code example – linear regression with EdSurvey package

myvariables <- c("math", "read", "scie","escs", "st011q12ta", "st004d01t",

"st034q02ta", "sc012q01ta")

depended <- "scie"

independed <- c("st011q12ta", "st004d01t")

package <- 2 #1 - BIFIEsurvey, 2 - EdSurvey, 3 - intsvy

reg_equation <- line_regression(mydata, myvariables, depended, independed,

package)

summary(reg_equation)

Function result

3. Code example – linear regression with intsvy package

myvariables <- c("math", "read", "scie","escs", "st011q12ta", "st004d01t",

"st034q02ta", "sc012q01ta")

depended <- "scie"

independed <- c("st011q12ta", "st004d01t")

package <- 3 #1 - BIFIEsurvey, 2 - EdSurvey, 3 - intsvy

reg_equation <- line_regression(mydata, myvariables, depended, independed,

package)

summary(reg_equation)

Function result

6.2. Multiple linear regression

Regression is calculated for several dependent variable and for several the same independent variables.

Regression can be calculated for single plausible value and for all plausible values named with

common names. Common names for plausible values in PISA 2015 data: "math", "read", "scie",

"scep", "sced", "scid", "skco", "skpe", "ssph", "ssli", "sses", "flit", "clps".

Function usage

multi_regression (mydata, depended, independed)

mydata Data.frame formed with form_data function

depended string for the dependent variable in the regression model

independed a character vector of the independed variables

Code example

depended <- c("scie","read")

independed <- c("st004d01t")

reg_equation_multi <- multi_regression(mydata, depended, independed)

summary(reg_equation_multi)

Function result

6.3. Logistic regression

Regression is calculated for one dependent variable and for several independent variables. Regression

can be calculated for single plausible value and for all plausible values named with common names.

Common names for plausible values in PISA 2015 data: "math", "read", "scie", "scep", "sced", "scid",

"skco", "skpe", "ssph", "ssli", "sses", "flit", "clps".

Function usage

log_regression(mydata, myvariables, depended, independed)

mydata Data.frame formed with form_data function

myvariables a character vector of the variables to be included in the data. The names of the

variables are written in lower case. Country code, student ID, school ID,

weights and replicate weight are default in the data. There is no need to write

all plausible values names (e.g. “pv1math”, “pv2math”), it is enough to write

a common name (e.g. “math”) and all plausible values will be assigned to the

data. Common names for plausible values in PISA 2015 data: "math", "read",

"scie", "scep", "sced", "scid", "skco", "skpe", "ssph", "ssli", "sses", "flit",

"clps".

depended string for the dependent variable in the regression model

independed a character vector of the independed variables

Code example

myvariables <- c("math", "read", "scie","escs", "st011q12ta", "st004d01t",

"st034q02ta", "sc012q01ta")

depended <- "scie"

independed <- c("st011q12ta", "st004d01t")

reg_log_equation <- log_regression(mydata, myvariables, depended,

independed)

reg_log_equation

Function result

7. Multilevel
This is two-level modelling. About two-level modeling you can read in OECD manual in section

“Multilevel analyses” (OECD, 2009). This function provides model estimates and the total error for all

replicate weights for one plausible value or calculates the mean of the estimates and the total error for

all replicate weights for several plausible values.

Function usage

multilevel(mydata, depended, independed, random, class)

mydata Data.frame formed with form_data function

depended dependent variable in the two-level model

independed a character vector of independed variables in the two-level model

random a character vector of random variables in the two-level model

class the same grouping variable in the two-level model

1. Code example – empty model (one plausible value)

depended <- "pv1scie"

class <- "cntschid"

modmy1a <- multilevel(mydata = mydata1, depended = depended, class = class)

summary.EFECTAS(modmy1a)

Function result

Output three table: random effects (estimates and total error for all replicate weights), fixed effects

(estimates and total error for all replicate weights) and intraclass correlation (estimate count from

random effect intercept and residual, and total error for all replicate weights).

2. Code example – empty model (all plausible value)

depended <- "scie"

class <- "cntschid"

modmy1b <- multilevel(mydata = mydata1, depended = depended, class = class)

summary.EFECTAS(modmy1b)

Function result

Output three table: random effects (the mean of the estimates and the total error for all replicate

weights), fixed effects (the mean of the estimates and the total error for all replicate weights) and

intraclass correlation (the mean of the estimates count from random effect intercept and residual, and

total error for all replicate weights).

3. Code example – model with fixed slopes (one plausible value)

depended <- "pv1scie"

independed <- c("escs", "gender")

class <- "cntschid"

modmy2a <- multilevel(mydata = mydata1, depended = depended,

independed = independed, class = class)

summary.EFECTAS(modmy2a)

Function result

Output three table: random effects (estimates and total error for all replicate weights), fixed effects

(estimates and total error for all replicate weights) and intraclass correlation (estimate count from

random effect intercept and residual, and total error for all replicate weights).

4. Code example – model with fixed slopes (all plausible value)

depended <- "scie"

independed <- c("escs", "gender")

class <- "cntschid"

modmy2b <- multilevel(mydata = mydata1, depended = depended,

independed = independed, class = class)

summary.EFECTAS(modmy2b)

Function result

Output three table: random effects (the mean of the estimates and the total error for all replicate

weights), fixed effects (the mean of the estimates and the total error for all replicate weights) and

intraclass correlation (the mean of the estimates count from random effect intercept and residual, and

total error for all replicate weights).

5. Code example – model with random slopes (one plausible value)

depended <- "pv1scie"

independed <- c("escs", "gender", "type", "mu_escs", "escs*type",

"escs*mu_escs", "gender*type", "gender*mu_escs")

random <- c("escs", "gender")

class <- "cntschid"

modmy3a <- multilevel(mydata = mydata1, depended = depended,

independed = independed, random = random,

class = class)

summary.EFECTAS(modmy3a)

Function result

Output three table: random effects (estimates and total error for all replicate weights), fixed effects

(estimates and total error for all replicate weights) and intraclass correlation (estimate count from

random effect intercept and residual, and total error for all replicate weights).

6. Code example – model with random slopes (all plausible value)

depended <- "scie"

independed <- c("escs", "gender", "type", "mu_escs", "escs*type",

"escs*mu_escs", "gender*type", "gender*mu_escs")

random <- c("escs", "gender")

class <- "cntschid"

modmy3b <- multilevel(mydata = mydata1, depended = depended,

independed = independed, random = random,

class = class)

summary.EFECTAS(modmy3b)

Function result

Output three table: random effects (the mean of the estimates and the total error for all replicate

weights), fixed effects (the mean of the estimates and the total error for all replicate weights) and

intraclass correlation (the mean of the estimates count from random effect intercept and residual, and

total error for all replicate weights).

7.1. Data preparation according to OECD manual

Data must be cleared of NA values or incorrect values before analysis. NA values can be removed. NA

values can be removed by importing data with getData function from EdSurvey package. replace_value

function helps to replace numeric and text data values with other numeric values.

Function usage

replace_value(mydata, oldname, newname, change)

mydata Data.frame formed with form_data function

oldname column name of the replaceable values

newname new column name of the replaceable values. Can be empty than the values

will be rewritten.

change vector describing the change of values. Odd variables shows old values, and

even variables shows new values. For example:

1) gender vector consists of values 1 (female) and 2 (male). You want to

change to 0 (male) and 1 (female), than change vector will be c(2,0)

2) gender vector consists of values “Female” and “Male”. You want to

change to 0 (male) and 1 (female), than change vector will be c(“Male”,

0, “Female”, 1)

1. Code example – all values change to different values

change <- c("FEMALE", 1, "MALE", 0)

mydata1 <- replace_value(mydata = mydata1, oldname = "st004d01t", newname =

"gender", change = change)

Function result

A new column “gender” will appear in mydata1 data. Column “gender” values will be 0 and 1. The old

column “st004d01t” with values “FEMALE” and “MALE” will remain.

2. Code example – some values change to the same values

change <- c(111, 0, 121, 0, 112, 0, 122, 1, 222, 1)

mydata1 <- replace_value(mydata = mydata1, oldname = "immig", change =

change)

Function result

Column “immig” values 111, 121, 112, 122 and 222 will be replaced with values 0 and 1.

3. Code example – data preparation according to OECD manual

change <- c("FEMALE", 1, "MALE", 0)

mydata1 <- replace_value(mydata2 = mydata1, oldname = "st004d01t",

 newname = "gender", change = change)

change <- c("NO RESPONSE", 9, "OTHER COUNTRY", 2, "COUNTRY OF TEST",

 1)

mydata1 <- replace_value(mydata2 = mydata1, oldname = "st019aq01t",

 change = change)

mydata1 <- replace_value(mydata2 = mydata1, oldname = "st019bq01t",

 change = change)

mydata1 <- replace_value(mydata2 = mydata1, oldname = "st019cq01t",

 change = change)

mydata1$immig <- (100*mydata1$st019aq01t)+(10*mydata1$st019bq01t)+

 (mydata1$st019cq01t)

change <- c(111, 0, 121, 0, 112, 0, 122, 1, 222, 1)

mydata1 <- replace_value(mydata2 = mydata1, oldname = "immig",

change = change)

mydata1$st019aq01t <- NULL

mydata1$st019bq01t <- NULL

mydata1$st019cq01t <- NULL

change <- c("GENERAL", 0, "PRE-VOCATIONAL", 1, "VOCATIONAL", 1,

 "MODULAR", 1)

mydata1 <- replace_value(mydata2 = mydata1, oldname = "iscedo",

 newname = "vocation", change = change)

mydata1 <- na.omit(mydata1)

7.2. Weight normalization acordint to OECD manual

The sum of the weights is equal to the number of students in the dataset.

Function usage

normalization_weight(mydata)

mydata Data.frame formed with form_data function

Code example

mydata1 <- normalization_weight(mydata1)

Literature

Bailey, P., C’deBaca, R., Emad, A., Huo, H., Lee, M., Liao, Y., . . . Zhang, T. (2019). Edsurvey:

Analysis of nces education survey and assessment data [Computer software manual]. Retrieved from

https://www.air.org/project/nces-data-r-project-edsurvey (R package version 2.3.2)

Caro, D., Biecek, P. (2019). Intsvy: International Assessment Data Manager [Computer software

manual]. Retrieved from https://cran.r-project.org/web/packages/intsvy/intsvy.pdf (R package version

2.4)

OECD (2009), PISA Data Analysis Manual: SAS, Second Edition, PISA, OECD Publishing, Paris,

https://doi.org/10.1787/9789264056251-en.

https://www.air.org/project/nces-data-r-project-edsurvey
https://doi.org/10.1787/9789264056251-en

